Расчёт рабочего цикла двигателя внутреннего сгорания автотракторного типа с помощью персональной ЭВМ

Транспортная информация » Расчёт рабочего цикла двигателя внутреннего сгорания автотракторного типа с помощью персональной ЭВМ

Страница 1

Задача сформулирована в прямой постановке, когда известны основные данные двигателя (диаметр цилиндра, ход поршня, степень сжатия, тип камеры сгорания), а также вид топлива и требуется определить показатели его эффективности и экономичности. На основе разработанной физико-математической модели (ФММ) с помощью персональной ЭВМ получают:

· расчётную индикаторную диаграмму двигателя, для этого рассчитываются функции V(φ); m(φ); T(φ); P(φ);

· цикловые показатели двигателя (индикаторную работу цикла Li, индикаторную мощность Ni);

· удельные цикловые показатели (среднее индикаторное давление pi; индикаторный КПД ηi; удельный индикаторный расход топлива gi);

· данные о влиянии определенного фактора Z (конструктивного, режимного, регулировочного, эксплуатационного и т.д.) на показатели двигателя и на состояние рабочего тела в цилиндре.

Решение поставленной задачи завершается общей оценкой технических качеств двигателя, а также принятием инженерного решения (или выдачей рекомендаций) о рациональном выборе конкретных конструктивных, регулировочных и других характеристик. Если последнее невозможно, то ограничиваются констатацией выявленного влияния фактора Z на конечные результаты и объяснением физических причин этого влияния.

Задача решается с помощью физико-математической модели 2-го уровня, включающей дифференциальные и конечные уравнения для определения четырёх параметров состояния рабочего тела (объёма V, массы m, температуры T и давления P). При разработке модели приняты следующие допущения:

1) процессы газообмена (выпуска, продувки, впуска) не рассчитываются, так как они протекают при малых перепадах давлений и вносят незначительный энергетический вклад в сравнении с другими процессами; влияние этих процессов на показатели двигателя учитывают на основе статистических данных путём выбора начальных условий;

2) теплоёмкости рабочего тела принимаются различными для свежего заряда и для продуктов сгорания, но неизменными для процесса сжатия, а также для процессов сгорания-расширения; указанные теплоёмкости выбраны средними в диапазоне температур и состава рабочего тела;

3) температуры ограничивающих стенок (поршня, крышки и цилиндра) считаются одинаковыми в течение цикла;

4) параметры рабочего тела являются неизменными по объёму в любой момент времени;

Система дифференциальных уравнений дополнена соотношениями, описывающими реальные процессы сгорания и теплообмена со стенками. Решается система уравнений на персональной ЭВМ методом Эйлера. Начальные условия (параметры рабочего тела в цилиндре в начале счёта-Va, ma, Ta, Pa) задают, пользуясь опытными статистическими данными, и уточняют с помощью уравнения состояния. Граничные условия (давление Pk и температура Tk на впуске, давление Pт и температура Tт на выпуске, температура Tw ограничивающих стенок) оценивают по экспериментальным материалам. Уравнения выражают зависимости параметров рабочего (V, m, T, P) и некоторых других характеристик (закономерностей сгорания и теплообмена) от угла поворота коленчатого вала φ. Начало отсчёта угла φ выбирают в начале такта впуска при положении поршня в ВМТ, поэтому рас- чёт рабочего цикла ведут в диапазоне φ=180…450°. Шаг интегрирования выбирают в пределах ∆φ=1 5°.

Основная система уравнений включает кинематические соотношения, характеризующие изменение объёма и поверхности цилиндра, уравнения материального и энергетического баланса, а также уравнения состояния рабочего тела.

Объём цилиндра изменяется в соответствии с закономерностями кривошипно-шатунного механизма (первое кинематическое уравнение):

, (1)

где Vc-объём камеры сжатия, м3;

Fп-площадь поршня, м2;

rk-радиус кривошипа, м;

λk-отношение радиуса кривошипа к длине шатуна.

Путём дифференцирования соотношения (1) получим приращение объёма:

(2)

которое представляет собой первое кинематическое уравнение в дифференциальной форме.

Так как процессы газообмена не рассматриваются, то масса рабочего тела в цилиндре изменяется только за счёт испарения и сгорания топлива. В дизельном двигателе топливо поступает в цилиндр в жидком виде, и в таком состоянии оно рабочим телом не является. Затем топливо испаряется и сгорает, образуя газообразные продукты сгорания. Различие по времени между испарением и сгоранием в реальных условиях ДВС невелико, поэтому будем считать, что увеличение массы рабочего тела за счёт топлива происходит в процессе сгорания.

Страницы: 1 2 3


Статьи по теме:

Воздушная система
Наддув лабиринтных уплотнений масляных полостей осуществляется воздухом, отбираемым из канала наружного контура двигателя. Воздух отбирается из-за IV ступени первого каскада компрессора и из канала н ...

Определение показателей использования ТПС
Определение количественных показателей Количественные показатели определяют объем перевозок и технической работы депо. Основными показателями объема перевозок являются: в грузовом движении – грузообо ...

Стадии аудита безопасности
Аудит безопасности может оказаться эффективным для любых дорожных проектов и на любых стадиях их реализации вне зависимости от масштаба этих проектов. Традиционно аудит безопасности выполняется на ст ...

Навигация

Copyright © 2019 - All Rights Reserved - www.transpobrand.ru